Electronic correlation and magnetism in multi-band Kondo lattice model
نویسندگان
چکیده
We propose a self-consistent approximate solution of the disordered Kondo-lattice model (KLM) to get the interconnected electronic and magnetic properties of ’local-moment’ systems like diluted ferromagnetic semiconductors. Aiming at (A1−xMx) compounds, where magnetic (M) and non-magnetic (A) atoms are distributed randomly over a crystal lattice, we present a theory which treats the subsystems of itinerant charge carriers and localized magnetic moments in a homologous manner. The coupling between the localized moments due to the itinerant electrons (holes) is treated by a modified RKKY-theory which maps the KLM onto an effective Heisenberg model. The disordered electronic and magnetic moment systems are both treated by coherent potential approximation (CPA) methods. An extension of CPA to perform a self-consistent model calculation of the electronic and magnetic properties of diluted local-moment systems A1−xMx described by ferromagnetic Kondo-lattice model (s − f model), where we included disorder in the first environment shell by use of crystal field parameters between two non-magnetic, one magnetic and non-magnetic, and two magnetic atoms, respectively λAA, λAM , λMM , and to get the interconnected electronic and magnetic properties of systems like diluted ferromagnetic semiconductors (DMS) is proposed. We discuss in detail the dependencies of the key-terms such as the long range and oscillating effectice exchange integrals and the Curie temperature as well as the electronic and magnonic quasiparticle densities of states on the concentration x of magnetic ions, the carrier concentration n, the exchange coupling J and the crystal field parameters.
منابع مشابه
HOW THE KONDO EFFECT CAN EXIST IN Gd INTERMETALLIC COMPOUNDS
Based on the crystal and magnetic structural properties of some Gd intermetallic compounds, it is shown that with increasing conduction electron concentration, Gd experiences electronic and magnetic instability, and that these behaviors point to the appearance of Kondo Lattice. We suggest that the conduction electrons have gained local character. It is shown that Kondo effect should be observed...
متن کاملMetallic Ferromagnetism - an Electronic Correlation Phenomenon
New insights into the microscopic origin of itinerant ferromagnetism were recently gained from investigations of electronic lattice models within dynamical meanfield theory (DMFT). In particular, it is now established that even in the one-band Hubbard model metallic ferromagnetism is stable at intermediate values of the interaction U and density n on regular, frustrated lattices. Furthermore, b...
متن کاملسیستمهای ناکام و همبسته الکترونی
Quantum phases and fluctuations in correlated electron systems with frustration and competing interactions are reviewed. In the localized moment case the S=1/2 J1 - J2 - model on a square lattice exhibits a rich phase diagram with magnetic as well as exotic hidden order phases due to the interplay of frustration and quantum fluctuations. Their signature in magnetocaloric quantities and the hig...
متن کاملMagnetic Order Beyond RKKY in the Classical Kondo Lattice
We study the Kondo lattice model of band electrons coupled to classical spins, in three dimensions, using a combination of variational calculation and Monte Carlo. We use the weak coupling ‘RKKY’ window and the strong coupling regime as benchmarks, but focus on the physically relevant intermediate coupling regime. Even for modest electron-spin coupling the phase boundaries move away from the RK...
متن کامل2 6 Ju n 20 06 Temperature dependent electronic correlation effects in GdN
We investigate temperature dependent electronic correlation effects in the conduction bands of Gadolinium Nitride (GdN) based on the combination of many body analysis of the multi-band Kondo lattice model and the first principles TB-LMTO bandstructure calculations. The physical properties like the quasi-particle density of states (Q-DOS), spectral density (SD) and quasi-particle bandstructure (...
متن کامل